Search results for "Deterministic algorithm"

showing 10 items of 27 documents

Optimal standalone data center renewable power supply using an offline optimization approach

2022

Abstract Because of the increasing energy consumption of data centers and their C O 2 emissions, the ANR DATAZERO2 project aims to design autonomous data centers running solely on local renewable energy coupled with storage devices to overcome the intermittency issue. In order to optimize the use of renewable energy and storage devices, a MILP solver is usually in charge of assigning the power to be supplied to the data center. However, in order to reduce the computation time and make the approach scalable, it would be more appropriate to use a polynomial time algorithm. This paper aims at showing and proving that it is possible to provide an optimal power profile via a deterministic algori…

Binary search algorithmMathematical optimizationGeneral Computer Sciencebusiness.industryDeterministic algorithmComputer scienceEnergy consumptionSolverRenewable energyScalabilityData centerElectrical and Electronic EngineeringbusinessTime complexitySustainable Computing: Informatics and Systems
researchProduct

Complexity of decision trees for boolean functions

2004

For every positive integer k we present an example of a Boolean function f/sub k/ of n = (/sub k//sup 2k/) + 2k variables, an optimal deterministic tree T/sub k/' for f/sub k/ of complexity 2k + 1 as well as a nondeterministic decision tree T/sub k/ computing f/sub k/. with complexity k + 2; thus of complexity about 1/2 of the optimal deterministic decision tree. Certain leaves of T/sub k/ are called priority leaves. For every input a /spl isin/ {0, 1}/sup n/ if any of the parallel computation reaches a priority leaves then its label is f/sub k/ (a). If the priority leaves are not reached at all then the label on any of the remaining leaves reached by the computation is f/sub k/. (a).

CombinatoricsDiscrete mathematicsNondeterministic algorithmComputational complexity theoryIntegerDecision treeTree (set theory)Boolean functionMathematics33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.
researchProduct

Nondeterministic operations on finite relational structures

1998

Abstract This article builds on a tutorial introduction to universal algebra for language theory (Courcelle, Theoret. Comput. Sci. 163 (1996) 1–54) and extends it in two directions. First, nondeterministic operations are considered, i.e., operations which give a set of results instead of a single one. Most of their properties concerning recognizability and equational definability carry over from the ordinary case with minor modifications. Second, inductive sets of evaluations are studied in greater detail. It seems that they are handled most naturally in the framework presented here. We consider the analogues of top-down and bottom-up tree transducers. Again, most of their closure propertie…

Discrete mathematicsFinite-state machineGeneral Computer ScienceComputer scienceLogicFormal languages (recognizable and context-free sets transducers)Unbounded nondeterminismMonad (functional programming)Symbolic computationHypergraphsFirst-order logicLogical theoryDecidabilityTheoretical Computer ScienceNondeterministic algorithmAlgebraDeterministic automatonFormal languageUniversal algebraEquivalence relationTree transducersRewritingComputer Science(all)Theoretical Computer Science
researchProduct

Superiority Of One-Way And Realtime Quantum Machines

2012

In automata theory, quantum computation has been widely examined for finite state machines, known as quantum finite automata (QFAs), and less attention has been given to QFAs augmented with counters or stacks. In this paper, we focus on such generalizations of QFAs where the input head operates in one-way or realtime mode, and present some new results regarding their superiority over their classical counterparts. Our first result is about the nondeterministic acceptance mode: Each quantum model architecturally intermediate between realtime finite state automaton and one-way pushdown automaton (one-way finite automaton, realtime and one-way finite automata with one-counter, and realtime push…

Discrete mathematicsFinite-state machineTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral MathematicsPushdown automaton0102 computer and information sciences02 engineering and technologyω-automaton01 natural sciencesComputer Science ApplicationsNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringQuantum finite automataAutomata theory020201 artificial intelligence & image processingAlgorithmSoftwareComputer Science::Formal Languages and Automata TheoryQuantum cellular automatonMathematicsQuantum computer
researchProduct

Nondeterministic Unitary OBDDs

2017

We investigate the width complexity of nondeterministic unitary OBDDs (NUOBDDs). Firstly, we present a generic lower bound on their widths based on the size of strong 1-fooling sets. Then, we present classically “cheap” functions that are “expensive” for NUOBDDs and vice versa by improving the previous gap. We also present a function for which neither classical nor unitary nondeterminism does help. Moreover, based on our results, we present a width hierarchy for NUOBDDs. Lastly, we provide the bounds on the widths of NUOBDDs for the basic Boolean operations negation, union, and intersection.

Discrete mathematicsHierarchy (mathematics)Intersection (set theory)010102 general mathematics0102 computer and information sciencesFunction (mathematics)Computer Science::Computational Complexity01 natural sciencesUpper and lower boundsUnitary stateNondeterministic algorithmCombinatoricsNegation010201 computation theory & mathematicsBoolean operations in computer-aided design0101 mathematicsMathematics
researchProduct

Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs

2014

In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …

Discrete mathematicsImplicit functionBinary decision diagram010102 general mathematics02 engineering and technologyFunction (mathematics)Computer Science::Artificial IntelligenceComputer Science::Computational Complexity01 natural sciencesCombinatoricsNondeterministic algorithmComputer Science::Logic in Computer SciencePartial function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsBoolean functionQuantumQuantum computerMathematics
researchProduct

A Logical Characterisation of Linear Time on Nondeterministic Turing Machines

1999

The paper gives a logical characterisation of the class NTIME(n) of problems that can be solved on a nondeterministic Turing machine in linear time. It is shown that a set L of strings is in this class if and only if there is a formula of the form ∃f1..∃fk∃R1..∃Rm∀xφv; that is true exactly for all strings in L. In this formula the fi are unary function symbols, the Ri are unary relation symbols and φv; is a quantifierfree formula. Furthermore, the quantification of functions is restricted to non-crossing, decreasing functions and in φv; no equations in which different functions occur are allowed. There are a number of variations of this statement, e.g., it holds also for k = 3. From these r…

Discrete mathematicsNTIMEComputational complexity theoryUnary operationCombinatoricsNondeterministic algorithmTuring machinesymbols.namesakeNon-deterministic Turing machinesymbolsUnary functionTime complexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

TIGHT BOUNDS FOR THE SPACE COMPLEXITY OF NONREGULAR LANGUAGE RECOGNITION BY REAL-TIME MACHINES

2013

We examine the minimum amount of memory for real-time, as opposed to one-way, computation accepting nonregular languages. We consider deterministic, nondeterministic and alternating machines working within strong, middle and weak space, and processing general or unary inputs. In most cases, we are able to show that the lower bounds for one-way machines remain tight in the real-time case. Memory lower bounds for nonregular acceptance on other devices are also addressed. It is shown that increasing the number of stacks of real-time pushdown automata can result in exponential improvement in the total amount of space usage for nonregular language recognition.

Discrete mathematicsNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESUnary operationComputationTheory of computationComputer Science (miscellaneous)Pushdown automatonSpace (mathematics)MathematicsLanguage recognitionExponential functionInternational Journal of Foundations of Computer Science
researchProduct

Finite State Transducers with Intuition

2010

Finite automata that take advice have been studied from the point of view of what is the amount of advice needed to recognize nonregular languages. It turns out that there can be at least two different types of advice. In this paper we concentrate on cases when the given advice contains zero information about the input word and the language to be recognized. Nonetheless some nonregular languages can be recognized in this way. The help-word is merely a sufficiently long word with nearly maximum Kolmogorov complexity. Moreover, any sufficiently long word with nearly maximum Kolmogorov complexity can serve as a help-word. Finite automata with such help can recognize languages not recognizable …

Discrete mathematicsTheoretical computer scienceNested wordKolmogorov complexityComputer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Nondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonKolmogorov structure functionProbabilistic automatonQuantum finite automataNondeterministic finite automatonComputer Science::Formal Languages and Automata Theory
researchProduct

Nondeterministic Moore automata and Brzozowski's minimization algorithm

2012

AbstractMoore automata represent a model that has many applications. In this paper we define a notion of coherent nondeterministic Moore automaton (NMA) and show that such a model has the same computational power of the classical deterministic Moore automaton. We consider also the problem of constructing the minimal deterministic Moore automaton equivalent to a given NMA. We propose an algorithm that is a variant of Brzozowski’s minimization algorithm in the sense that it is essentially structured as reverse operation and subset construction performed twice. Moreover, we explore more general classes of NMA and analyze the applicability of the algorithm. For some of such classes the algorith…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral Computer ScienceBrzozowski’s minimization algorithmSettore INF/01 - InformaticaPowerset constructionAutomata minimizationBüchi automatonNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceNondeterministic algorithmDeterministic finite automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationDeterministic automatonTwo-way deterministic finite automatonNondeterministic finite automatonBrzozowski's minimization algorithmComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsNondeterministic Moore automata
researchProduct